Creating Plug-and-Play IP Networks in Large SoCs with IEEE P1687 (IJTAG)
Until now, the integration and testing of IP blocks used in large SOCs has been a manual, time consuming design effort. A new standard called IEEE P1687 (or “IJTAG”) for IP plug-and-play integration is emerging to simplify these tasks. EDA tools are also emerging to support the new standard. Last week mentor announcedTessent IJTAG, which simplifies connecting any number of IJTAG-compliant IP blocks into an integrated, hierarchical network, allowing access to them from a single point. IJTAG will save engineering time by automating design tasks, and potetntially reduce the length of an aggregated test sequence for all the IP blocks in an SOC. This translates into reduced test time and smaller tester memory requirements.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related Blogs
- Arteris expands their approach to Networks on Chips
- Creating commercial IP in academic community
- Creating SystemC TLM-2.0 Peripheral Models
- Latest version of SystemC, IEEE 1666-2011, now supports TLM 2.0
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?