Alif Is Creating SoC Solutions for Machine Learning with Cadence and Arm
Alif Semiconductor is bridging the gap between standard microcontrollers and high-end GPU solutions. They’re providing scalable, integrated, and secure microprocessors and microcontrollers for low-power machine learning (ML) tasks. To design these complex SoCs, Alif is using Cadence’s state-of-the-art EDA tools as well as the Arm® Cortex® and Ethos processors.
While standard MCUs can address simple ML tasks like keyword spotting or failure detection, tasks like facial or speech recognition are much heavier and require hundreds of giga operations per second (GOPS). Standard MCUs can’t deliver that. Designers would have to jump to the GPU classes to achieve that kind of performance, but they’re too costly, too big, and consume too much power.
To read the full article, click here
Related Semiconductor IP
- 50MHz to 800MHz Integer-N RC Phase-Locked Loop on SMIC 55nm LL
- Simulation VIP for AMBA CHI-C2C
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
Related Blogs
- SoC QoS gets help from machine learning
- Take your neural networks to the next level with Arm's Machine Learning Inference Advisor
- NetSpeed Leverages Machine Learning for Automotive IC End-to-End QoS Solutions
- Machine Learning And Design Into 2018 - A Quick Recap
Latest Blogs
- Powering Scale Up and Scale Out with 224G SerDes for UALink and Ultra Ethernet
- Arm and Synopsys: Delivering an Integrated, Nine-Stage “Silicon-to-System” Chip Design Flow
- Accelerate Automotive System Design with Cadence AI-Driven DSPs
- What Makes FPGA Architecture Ideal for Ultra-Low-Latency Systems?
- Introducing agileSecure anti-tamper security portfolio