Machine Learning And Design Into 2018 - A Quick Recap
How could we differentiate between deep learning and machine learning as there are many ways of describing them? A simple definition of these software terms can be found here. Let's look into Artificial Intelligence (AI), which was coined back in 1956. The term AI can be defined as human intelligence exhibited by machines. While machine learning is an approach to achieve AI and deep learning is a technique for implementing subset of machine learning.
During last year 30-Year Anniversary of TSMC Forum, nVidia CEO Jen-Hsen Huang mentioned two concurrent dynamics disrupting the computer industry today, i.e.,how software development is done by means of deep learning and how computing is done through the more adoption of GPU as replacement to single-threaded/multi-core CPU, which is no longer scale and satisfy the current increased computing needs. The following charts illustrate his message.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Blogs
- System-on-Chip Design: Integrating Complex Systems into a Single Silicon Solution
- Exploring AI / Machine Learning Implementations with Stratus HLS
- Analog Bits Steals the Show with Working IP on TSMC 3nm and 2nm and a New Design Strategy
- The Wonders of Machine Learning: Tackling Lint Debug Quickly with Root-Cause Analysis (Part 3)
Latest Blogs
- Why What Where DIFI and the new version 1.3
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware