Accelerating RISC-V Processor Verification: A Co-Simulation Strategy
With RISC-V processor architectures gaining traction across diverse computing systems, ensuring their reliability through rigorous verification becomes more crucial than ever. We have embraced a robust co-simulation strategy for verifying the NOEL-V RISC-V processor. This strategy integrates behavioural simulation with the SPIKE open-source RISC-V ISA simulator.
The NOEL-V is a synthesizable VHDL model of a processor that implements the RISC-V architecture. The NOEL-V is designed for space applications, targeting high-performance and fault-tolerance. The processor model offers many customization options and its advanced design required advanced verification strategies.
The Challenge of Processor Verification
Traditional processor verification methodologies often rely on a combination of simulation, formal methods, and emulation. Simulation-based approaches entail executing test vectors on a model of the processor to validate its behavior against the expected outcomes. While effective, simulation is time-consuming and may not capture all corner cases. Formal methods, on the other hand, provide mathematical proofs of correctness but are often limited in scalability and practicality. Emulation offers a middle ground, but it is costly and complex to set up.
The RISC-V ecosystem’s flexibility allows us to tailor verification approaches to better suit various implementations and configurations.
Our Approach: Comparative Analysis with SPIKE
Our verification strategy for the NOEL-V processor revolves around comparing execution flows between two models: the behavioural simulation of NOEL-V’s VHDL implementation and the SPIKE RISC-V ISA simulator.
To read the full article, click here
Related Semiconductor IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- Compact Embedded RISC-V Processor
- Multi-core capable 64-bit RISC-V CPU with vector extensions
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
Related Blogs
- Improving RISC-V Processor Quality with Verification Standards and Advanced Methodologies
- Raising RISC-V processor quality with formal verification
- NOEL-V: A RISC-V Processor for High-Performance Space Applications
- Customizing an Existing RISC-V Processor
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
