RRAM: A New Approach to Embedded Memory
Sylvain Dubois, Sr. Director, Strategic Marketing & Business Development, Crossbar
EETimes (2/11/2014 08:30 AM EST)
The emergence of the Internet of Things (IoT) and the insatiable demand for smart devices in every aspect of life is driving a complete overhaul of traditional wisdom in the microcontroller and embedded memory markets.
As electronic devices become smarter, the software code becomes larger and needs to be processed faster to handle the communication protocols, authentication, message generation, and historical backlog. The reality is now dawning on our industry that current memory technology just can't deliver upon this new generation of code storage capacity and performance demands, with embedded software code increasing quickly from a few KiloBytes to several MegaBytes.
With analyst firms such as Web-Feet Research predicting that the embedded memory market for consumer electronics will reach over $2.88 billion by 2018, the time is now to figure out a solution to this problem. If traditional memory technologies can't meet the demand, then what can? And with Flash so ubiquitous in consumer electronics designs, is it even plausible to consider replacing the existing worn-out technology?
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- A new era for embedded memory
- New Realities Demand a New Approach to System Verification and Validation
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology
- A comprehensive approach to enhancing IoT Security with Artificial Intelligence
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS