An architecture for designing reusable embedded systems software, Part 2
Embedded.com (05/05/08, 12:30:00 AM EDT)
Want to make your application software more reusable? Don't change the hardware, operating system, or your tools. Instead change the architectural framework within which you do your design. Part 2 in the three-part series shows building blocks for the portable code software structure.
As discussed in Part 1 in this series, the linchpin in making this reusable embedded systems software architecture work is the software interface layer, which consists of three components:
1) Microcontroller specification (ECU_HSIS.H).
2) I/O signals interface specification (I/O Signal #1, #2, #n).
3) I/O interface macros (Interface.h, Interface.c).
ECU_HSIS.H:
Hardware/software-interface specification
The ECU_HSIS.H file would contain references to three external files that are used to further define the microcontroller architecture, as shown in Figure 1. The base ECU_HSIS would define the I/O parameters from the microcontroller pins out a wiring harness used to interface to the sensors and drivers. Each one of the subheader files is specific to the internal workings of the CPU and will be discussed in detail later in this series.
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related White Papers
- Designing low-energy embedded systems from silicon to software
- Self-testing in embedded systems: Software failure
- Android, Linux and Real-Time Development for Embedded Systems
- NAND Flash memory in embedded systems
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design