Self-testing in embedded systems: Software failure
Colin Walls, Mentor Graphics
embedded.com (February 23, 2016)
All electronic systems carry the possibility of failure. An embedded system has intrinsic intelligence that facilitates the possibility of predicting failure and mitigating its effects. This two-part series reviews the options for self-testing that are open to the embedded software developer, along with testing algorithms for memory and some ideas for self-monitoring software in multi-tasking and multi-CPU systems. In part one, we looked at self-testing approaches to guard against hardware failure. Here in part two, we look at self-testing methods that address software malfunctions.
As was mentioned in the introduction to part one, the acceptance of possible failure is a key requirement for building robust systems. This is extremely relevant when considering the possibility of software failure. Even when great care has been taken with the design, testing and debugging of code, it is almost inevitable that undiscovered bugs lurk in all but the most trivial code. Predicting a failure mode is tough, as this requires knowledge of the nature of the bug that leads to the failure and, if that knowledge were available, the bug would have been expunged during development.
The best approach is to recognize that there are broadly two types of software malfunction: data corruption and code looping. Some defensive code can be implemented to detect these problems before too much damage is done.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- Designing low-energy embedded systems from silicon to software
- Role of Embedded Systems and its future in Industrial Automation
- From I2C to I3C: Evolution of Two-Wire Communication in Embedded Systems
- Android, Linux and Real-Time Development for Embedded Systems
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS