Power considerations in designing with 90 nm FPGAs
ProgrammableLogicDesignLine
The adoption of FPGAs in more markets and systems every year reflects the successful efforts of leading FPGA vendors to push the envelope in process technology, performance/density, and price. Recently however, the move to 90nm has challenged FPGA vendors to do more than just extract maximum density, features, and clock cycles. This latest process node has introduced a new set of coincident issues regarding minimizing power consumption. This article will explore the various power considerations that can be addressed by the FPGA vendor and the end user.
In order to compete for sockets in many prime target applications, vendors must find ways to enable the designer to reduce FPGA power consumption in the entire system. Excessive power is expensive in many ways; it creates the need for special design and operational considerations – requiring everything from heat sinks to fans to sophisticated heat exchangers. Even the cost of larger power supplies as well as energy charges must be taken into consideration.
Managing power within the system budget is essential not only to reduce capital and operational expenditure, but often to maintain reliability as well. As their junction temperatures rise, transistors consume more power, thereby further increasing the temperature of the device. Left unchecked, this positive feedback loop can lead to thermal runaway.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- How to power FPGAs with Digital Power Modules
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- 90 nm requires collaboration on design rules
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions