Fixing concurrency defects in multicore design
Paul Anderson, GrammaTech Inc.
EETimes (2/7/2012 2:11 PM EST)
Having reached the limits of performance gains that can be realized from miniaturization and integration, microprocessor manufacturers are more and more frequently choosing multicore processors as the best approach to increased performance in computationally intensive embedded systems.
However, realizing the potential performance gains with multicores has a cost. Software written to be single-threaded for a single core processor will realize little or no performance benefit when executed on a multicore processor. To take advantage of the cores it must be rewritten or adapted to use multithreading.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- MEMS -> Defects present hurdle to volume production
- Multi-core multi-threaded SoCs pose debugging hurdles
- Realising the Full Potential of Multi-core Designs
- Realising the Full Potential of Multi-core Designs
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics