Realising the Full Potential of Multi-core Designs
Multi-core chips offer performance, scalability, low-power and flexibility, but are they useable by software engineers?
SIC, ASSP, FPGA and other System on Chip (SoC) designs containing multiple processor cores are becoming the preferred hardware platforms for many applications. Compared with uni-processor architectures, multi-core chips have the potential to provide a far higher level of price-performance. These chips combine specialist engines within a single design, which may include any configuration of multiple CPUs, DSPs and co-processors. With multi-core, a new class of flexible software-programmable designs are permeating the SoC and merchant semiconductor market. According to analysts, the multi-processor SoC segment is forecast to grow at a compound annual rate of around 30 percent.
Click here to read more ....
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- Realising the Full Potential of Multi-core Designs
- The Benefits of a Multi-Protocol PMA
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Reusable debug infrastructure in multi core SoC : Embedded WiFi case study
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor