Realising the Full Potential of Multi-core Designs
Multi-core chips offer performance, scalability, low-power and flexibility, but are they useable by software engineers?
SIC, ASSP, FPGA and other System on Chip (SoC) designs containing multiple processor cores are becoming the preferred hardware platforms for many applications. Compared with uni-processor architectures, multi-core chips have the potential to provide a far higher level of price-performance. These chips combine specialist engines within a single design, which may include any configuration of multiple CPUs, DSPs and co-processors. With multi-core, a new class of flexible software-programmable designs are permeating the SoC and merchant semiconductor market. According to analysts, the multi-processor SoC segment is forecast to grow at a compound annual rate of around 30 percent.
Click here to read more ....
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Realising the Full Potential of Multi-core Designs
- The Benefits of a Multi-Protocol PMA
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Reusable debug infrastructure in multi core SoC : Embedded WiFi case study
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant