Realising the Full Potential of Multi-core Designs
Multi-core chips offer performance, scalability, low-power and flexibility, but are they useable by software engineers?
SIC, ASSP, FPGA and other System on Chip (SoC) designs containing multiple processor cores are becoming the preferred hardware platforms for many applications. Compared with uni-processor architectures, multi-core chips have the potential to provide a far higher level of price-performance. These chips combine specialist engines within a single design, which may include any configuration of multiple CPUs, DSPs and co-processors. With multi-core, a new class of flexible software-programmable designs are permeating the SoC and merchant semiconductor market. According to analysts, the multi-processor SoC segment is forecast to grow at a compound annual rate of around 30 percent.
Click here to read more ....
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Articles
- Realising the Full Potential of Multi-core Designs
- The Benefits of a Multi-Protocol PMA
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Reusable debug infrastructure in multi core SoC : Embedded WiFi case study
Latest Articles
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- RoMe: Row Granularity Access Memory System for Large Language Models