HW/SW co-verification basics: Part 3 - Hardware-centric methods
Jason Andrews
EETimes (5/24/2011 1:43 PM EDT)
As we have seen in Part 1 and Part 2, there are benefits and drawbacks of using software models of microprocessors and other hardware. This section discusses techniques that avoid model creation issues by using a representation of the microprocessor that doesn't depend on an engineer coding a model of its behavior.
As the world of SoC design has evolved, the design flows used for microprocessor and DSP IP have changed. In the beginning, most IP for critical blocks such as the embedded microprocessor were in the form of hard IP. The company creating the IP wanted to make sure the user realized the maximum benefit in terms of optimized performance and area. The hard macro also allows the IP to be used without revealing all of the source code of the design. As an example, most of the ARM7TDMI designs use a hard macro licensed from ARM.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- HW/SW co-verification basics: Part 2 - Software-centric methods
- Transaction-based methodology supports HW/SW co-verification
- Approaches to accelerated HW/SW co-verification
- HW/SW co-verification basics: Part 1 - Determining what & how to verify
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events