HW/SW co-verification basics: Part 1 - Determining what & how to verify
Jason Andrews
5/23/2011 5:33 PM EDT
In this four part series, Jason Andrews details the importance of co-verification of both hardware and software in embedded system design and provides details on the various ways to achieve this. Part 1: Determining what and how to verify. The process of embedded system design generally starts with a set of requirements for what the product must do and ends with a working product that meets all of the requirements. Figure 6.1 below contains a list of the steps in the process and a short summary of what happens at each state of the design.
The requirements and product specification phase documents and defines the required features and functionality of the product. Marketing, sales, engineering, or any other individuals who are experts in the field and understand what customers need and will buy to solve a specific problem, can document product requirements.
Capturing the correct requirements gets the project off to a good start, minimizes the chances of future product modifications, and ensures there is a market for the product if it is designed and built. Good products solve real needs. have tangible benefits. and are easy to use.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Transaction-based methodology supports HW/SW co-verification
- Approaches to accelerated HW/SW co-verification
- HW/SW co-verification basics: Part 2 - Software-centric methods
- HW/SW co-verification basics: Part 3 - Hardware-centric methods
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions