FPGAs advance, but verification challenges increase
Dave Orecchio, GateRocket
10/18/2010 5:04 AM EDT
If there is one overriding success story in the semiconductor industry at the present time, it’s the exploding use of programmable logic devices (PLDs) in general, and field-programmable gate arrays (FPGAs) in particular.
The current state-of-the-art FPGA devices at the 45/40 nm technology node boast hundreds of thousands of look-up-tables (LUTs), thousands of DSP cores, multi-mega-bits of memory, and thousands of general-purpose input/output (GPIO) pins coupled with a humongous serial I/O bandwidth. These devices are now making their presence felt in a vast range of applications across multiple market segments, including aerospace and defense; automotive, broadcast, and consumer; high-performance computing (HPC); industrial, scientific, and medical; and wired and wireless communications.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Triple play - How FPGAs can tackle the challenges of network security
- Addressing the new challenges of ASIC/SoC prototyping with FPGAs
- Using FPGAs to solve challenges in industrial applications
- Verification challenges of ADC subsystem integration within an SoC
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design