FPGA constraints for the modern world: Product how-to
Joe Mallett, Synopsys
EDN (July 04, 2016)
Today’s FPGAs are larger and more complex than ever, and defining and applying correct design constraints is one of the biggest challenges. When the design fails to meet the timing performance requirements it can be very time consuming to find the issues, but the process is made easier with well-defined constraints.
Constraint setup can be a daunting task, and synthesis tools such as Synopsys’ Synplify Pro and Premier can help with automatic template creation, “autoconstraining” of new designs, setup and import of IP-specific constraints, and forward annotation to place and route software.
This articles details how Synplify, a timing-driven synthesis tool, enables designers to develop and apply correct timing constraints to achieve good quality of results (QoR). The following are the design elements that FPGA designers should consider when developing constraints:
- Identify clocks
- Identify and creating clock groupings and clock relationships
- Constrain clocks
- Constrain inputs and outputs
- Define multi-cycle paths and false-paths
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related White Papers
- FPGA Debug in the Modern World
- PRODUCT HOW-TO: Use ARM DBX hardware extensions to accelerate Java in space-constrained embedded apps
- PRODUCT HOW-TO: Doing embedded design with an Eclipse-based IDE
- PRODUCT HOW-TO: Hardware IP design reuse made easy with Altium's Innovation Station
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design