FPGA Debug in the Modern World
Joe Mallett, Synopsys
EETimes (4/11/2016 01:20 PM EDT)
A versatile, iterative, and incremental debug methodology allows FPGA designers to deliver debugged designs quickly and easily ensuring design integrity and robustness.
FPGA device density is continuing to grow at approximately 2x per node, which is driving the ability for FPGAs to incorporate more of the system design into the devices. This means that companies designing new FPGA-based products continue to drive higher integration and, subsequently, more complexity into their system designs. This has led companies designing complex FPGAs to move increasingly toward licensing IP cores for the majority of the building blocks of their designs, as opposed to building their own in-house custom versions.
FPGA designers typically use IP from multiple sources ranging from internal to FPGA device vendors. In order to efficiently leverage IP from multiple sources, designers require synthesis and debug tools that support the portability of IP across technologies, along with the ability to properly handle the various forms of IP. The Synplify synthesis tools automate much of the handling of design IP by directly supporting vendor IP catalogs like Altera's Megawizards and Xilinx's IP catalog.
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- FPGA Prototyping of Complex SoCs: RTL code migration and debug strategies
- Using Multi-Gigabit Transceivers to Test and Debug FPGA
- Tackling large-scale SoC and FPGA prototyping debug challenges
- FPGA debugging techniques to speed up pre-silicon validation
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection