Design considerations for integrated CMOS receivers
By Louis Fan Fei, Garmin International
RF Designline -- (10/12/07, 08:13:00 AM EDT)
To meet the demands for the multi-band, multi-mode wireless standards in the current market, a highly integrated wireless receiver (RX) is desired. CMOS technology has become the technology of choice for the integrated receiver design. CMOS's raw performance is not as good as SiGe or GaAs. But most of the baseband (BB) ICs are implemented with CMOS. Thus, it gives the advantage to CMOS in applications where a single chip that combines RF and BB IC is desired. The cost advantages of established CMOS manufacturing processes are also a factor to consider.
A traditional heterodyne RX converts the RF signal to the intermediate frequency (IF) stage. At every stage, various filters, such as surface acoustic wave (SAW) ones, are used to filter out the image signal, to select the channel, and to reduce the effects of any interfering signals. It is hard to achieve a fully-integrated receiver because of the required external components. Direct-conversion RX has become the dominant RX architecture. The well-known problems with a direct conversion RX like DC offset, high input second order intercept point (IIP2), and 1/f noise can be resolved with various correction loops in the BB and careful RFIC designs.
The major RX performance parameters are RX sensitivity, RX selectivity, dynamic range, IIP2, IIP3, and phase noise. The RX sensitivity is mostly set by the front end low noise amplifier (LNA) and the demodulator (DEMOD). The RX selectivity is determined by the on-chip low pass filter (LPF)'s rejection performance. Dynamic range, IIP2, and IIP3 are the measures of how robust a RX is with the presence of in-band and out-of-band interferences. Phase noise has a major impact on the signal modulation and demodulation as phase-shift key modulation is commonly used. This article thus will focus the major building blocks in the RX that influence receiver performance.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Generative AI for Analog Integrated Circuit Design: Methodologies and Applications
- Shift Left for More Efficient Block Design and Chip Integration
- Rising respins and need for re-evaluation of chip design strategies
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience
Latest Articles
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval