Generative AI for Analog Integrated Circuit Design: Methodologies and Applications
By Danial Noori Zadeh and Mohamed B. Elamien, McMaster University, Canada
Electronic Design Automation (EDA) in analog Integrated Circuits (ICs) has been the focus of extensive research; however, unlike its digital counterpart, it has not achieved widespread adoption. In this systematic review, we discuss recent contributions in the last five years, highlighting methods that address data scarcity, topology exploration, process-voltage-temperature (PVT) variations, and layout parasitics. Our goal is to support researchers new to this domain by creating a comprehensive collection of references and practical application guidelines. We provide a methodological review of state-of-the-art machine learning (ML) approaches, including graph neural networks (GNNs), large language models (LLMs), and variational autoencoders (VAEs), which have been successfully applied to analog circuit sizing tasks. To the best of authors’ knowledge, this is the first review to comprehensively explore the application of generative AI models in analog IC circuit design. We conclude that future research could focus on few-shot learning with domain-adaptation training of generative AI methods to simplify the design tasks such as human-tool interaction or guided design space exploration.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience
- Rising respins and need for re-evaluation of chip design strategies
- LTE-A Release 12 transmitter architecture: analog integration
- Time-Domain Analog Design: Why and How
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS