Debunking myths about analog IP at 28 nm
Manuel Mota, Synopsys
12/3/2012 12:37 PM EST
The economics of system-on-chip development are objective and well understood. Industry-wide trends set the stage for integrating more functions into a SoC, which then drives the scaling down of process technology nodes. In the resulting product, all of the previous product’s functionality is implemented while more functional blocks are added to build increasingly complex functionality. This trend is not questioned - it is an axiom.
Register transfer logic (RTL) is agnostic to the process technology node, so porting digital functionality is not perceived as problematic. However, analog functionality is perceived as more challenging because of its closer dependency on the process characteristics. At each new node, the debate regarding whether or not to integrate analog IP into the SoC is rekindled until the economics validate the integration. Successful mixed-signal SoCs in all previous process technology nodes have demonstrated this cycle despite the persistence of three myths around the economics of analog block implementation in advanced process technologies.
These three myths deserve to be analyzed to better understand why they are erroneous.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Articles
- Density Requirements at 28 nm
- Fully depleted silicon technology to underlie energy-efficient designs at 28 nm and beyond
- Analog IP to protect SoC from side-channel attacks
- Analog and Mixed-Signal Connectivity IP at 65nm and below
Latest Articles
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- RoMe: Row Granularity Access Memory System for Large Language Models