DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
By Muhammad Hassan ∗, Maria Mushtaq †, Jaan Raik ∗, Tara Ghasempouri ∗
∗ Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia
† Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

Abstract
RISC-V processors are becoming ubiquitous in critical applications, but their susceptibility to microarchitectural side-channel attacks is a serious concern. Detection of microarchitectural attacks in RISC-V is an emerging research topic that is relatively underexplored, compared to x86 and ARM. The first line of work to detect flush+fault-based microarchitectural attacks in RISC-V leverages Machine Learning (ML) models, yet it leaves several practical aspects that need further investigation. To address overlooked issues, we leveraged gem5 and propose a new detection method combining statistical preprocessing and association rule mining having reconfiguration capabilities to generalize the detection method for any microarchitectural attack. The performance comparison with state-of-the-art reveals that the proposed detection method achieves up to 5.15% increase in accuracy, 7% rise in precision, and 3.91% improvement in recall under the cryptographic, computational, and memory-intensive workloads alongside its flexibility to detect new variant of flush+fault attack. Moreover, as the attack detection relies on association rules, their human-interpretable nature provides deep insight to understand microarchitectural behavior during the execution of attack and benign applications.
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Real-Time ESD Monitoring and Control in Semiconductor Manufacturing Environments With Silicon Chip of ESD Event Detection
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Defend encryption systems against side-channel attacks
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection