DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
By Muhammad Hassan ∗, Maria Mushtaq †, Jaan Raik ∗, Tara Ghasempouri ∗
∗ Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia
† Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

Abstract
RISC-V processors are becoming ubiquitous in critical applications, but their susceptibility to microarchitectural side-channel attacks is a serious concern. Detection of microarchitectural attacks in RISC-V is an emerging research topic that is relatively underexplored, compared to x86 and ARM. The first line of work to detect flush+fault-based microarchitectural attacks in RISC-V leverages Machine Learning (ML) models, yet it leaves several practical aspects that need further investigation. To address overlooked issues, we leveraged gem5 and propose a new detection method combining statistical preprocessing and association rule mining having reconfiguration capabilities to generalize the detection method for any microarchitectural attack. The performance comparison with state-of-the-art reveals that the proposed detection method achieves up to 5.15% increase in accuracy, 7% rise in precision, and 3.91% improvement in recall under the cryptographic, computational, and memory-intensive workloads alongside its flexibility to detect new variant of flush+fault attack. Moreover, as the attack detection relies on association rules, their human-interpretable nature provides deep insight to understand microarchitectural behavior during the execution of attack and benign applications.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Real-Time ESD Monitoring and Control in Semiconductor Manufacturing Environments With Silicon Chip of ESD Event Detection
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Defend encryption systems against side-channel attacks
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant