Debugging FPGA-based video systems: Part 2
Andrew Draper, Altera Corp.
Embedded.com (June 2, 2013)
Most digital video protocols send video frames between boards using a clock and a series of synchronization signals. This is simple to explain but it is an inefficient way to communicate within a device, as all processing modules need to be ready to process data on every clock within the frame, but will be idle during the synchronization intervals.
Using a flow-controlled interface is more flexible because it simplifies processing blocks and allows them to spread the data processing over the whole frame time. Flow-controlled interfaces provide a way to control the flow of data in both directions e the source can indicate on which cycles there is data present and can backpressure when it is not ready to accept data.
In the Avalon ST flow-controlled interface the valid signal indicates that the source has data and the ready signal indicates that the sink is able to accept it (i.e. is not backpressuring the source).
If you are building a system from library components, most problems will occur when converting from clocked-video streams to flow-controlled video streams, and vice versa.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- Debugging FPGA-based video systems: Part 1
- Fundamentals of embedded video, part 2
- C-based coprocessor design, part 2: Datapath customization
- An architecture for designing reusable embedded systems software, Part 2
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor