Compiling FPGA netlists for formal verification
02/06/2006 9:00 AM EST, EE Times
Multi-million gate system-on-a–chip (SoC) designs easily fit into today’s FPGAs. Due to the ever increasing demand for more speed, less area, and less power, the transformation of a customer’s RTL description into a bitstream format that can program the FPGA is increasingly complicated. This in turn increases the demand for verifying the design transformations.
Even though FPGAs are reprogrammable, an error detected late in the design cycle, or even after the board has gone into production, can still be very expensive. In addition, some FPGA vendors offer migration to structured ASICs, in which a fabricated design cannot be reprogrammed. Therefore, it is even more important for designs targeted towards structured ASIC device families that implementation errors are caught early in the development phase.
For all of the above reasons, customers want to verify the functional correctness of the RTL-to-bitstream design transformations. Formal methods are becoming increasingly popular in the FPGA design methodology, as they offer several advantages over the traditional method of vector-based simulation. Some of these advantages are shorter runtime, better functional coverage, and no need for test vectors.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
Related White Papers
- A formal-based approach for efficient RISC-V processor verification
- Formal, simulation, and AMBA verification IP combine to verify configurable powerline networking SoC
- How formal verification saves time in digital IP design
- Don't over-constrain in formal property verification (FPV) flows
Latest White Papers
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems