Compiling FPGA netlists for formal verification
02/06/2006 9:00 AM EST, EE Times
Multi-million gate system-on-a–chip (SoC) designs easily fit into today’s FPGAs. Due to the ever increasing demand for more speed, less area, and less power, the transformation of a customer’s RTL description into a bitstream format that can program the FPGA is increasingly complicated. This in turn increases the demand for verifying the design transformations.
Even though FPGAs are reprogrammable, an error detected late in the design cycle, or even after the board has gone into production, can still be very expensive. In addition, some FPGA vendors offer migration to structured ASICs, in which a fabricated design cannot be reprogrammed. Therefore, it is even more important for designs targeted towards structured ASIC device families that implementation errors are caught early in the development phase.
For all of the above reasons, customers want to verify the functional correctness of the RTL-to-bitstream design transformations. Formal methods are becoming increasingly popular in the FPGA design methodology, as they offer several advantages over the traditional method of vector-based simulation. Some of these advantages are shorter runtime, better functional coverage, and no need for test vectors.
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related White Papers
- A formal-based approach for efficient RISC-V processor verification
- Formal, simulation, and AMBA verification IP combine to verify configurable powerline networking SoC
- How formal verification saves time in digital IP design
- Don't over-constrain in formal property verification (FPV) flows
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design