How formal verification saves time in digital IP design
David Vincenzoni
EDN (November 10, 2015)
It is well known that the task of verification looms large in the design of digital IP, as well as the design of SoCs. The target is to reach 100% for both RTL code and functional coverage, minimizing the time spent obtaining it. The most widely used methodology is based on Universal Verification Methodology (UVM) random constrained tests (either System Verilog or e language) that permit the construction of complex tests in a relatively short time while stressing the RTL code and keeping track of functional coverage. Some verification engineers also use formal methodology for verifying a dedicated part of the block such as standard interfaces, which completes the verification of the IP.
This article will describe a different approach for digital IP verification based on formal methodology, exhaustively verifying the functionalities through the definition of properties. The formal approach has the advantage of avoiding development of test benches. This new flow has been used during the design of a digital IP and has proven to significantly shrink verification time.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Formal-based methodology cuts digital design IP verification time
- How to manage changing IP in an evolving SoC design
- Time Interleaving of Analog to Digital Converters: Calibration Techniques, Limitations & what to look in Time Interleaved ADC IP prior to licensing
- Design patterns in SystemVerilog OOP for UVM verification
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems