Boundary scan: Seven benefits
Chintan Panchal & Parth Rao (eInfochips)
EDN (May 08, 2014)
Boundary Scan: What Is It?
Boundary scan test techniques were first discussed in the late 1980s. At the time, experts believed that the growing complexity of chips would have a serious effect on an ICT system's ability to place a nail accurately on a test pad. In addition, the development of multi-layer boards compounded the problem of physical access for testing interconnects between devices on a PCB.
Many of the testing industry experts predicted that the “bed of nails” test system would disappear with the increasing complexity of chips. As a result, a group of concerned test engineers banded together to address this problem. The group was known as the Joint Test Action Group (JTAG). Their preferred solution was to access device pins by means of an internal serial shift register around the boundary of the device as shown below. In the boundary scan design, the chip’s IOs were supplemented with the boundary scan cell (a storage element). The collection of boundary scan cells on a board can be configured in various ways to achieve a parallel-in, parallel-out shift register that is used for testing and for on-board programming purposes.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Signal Integrity --> LVDS extends utility of 1149.1 boundary scan test
- Boundary scan and JTAG emulation combine for advanced structural test and diagnostics
- Experts mull 'seven deadly myths' of SoC design
- Reconfigurable scan lowers test costs
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS