Architecture-oriented C optimization, part 2: Memory and more
By Eran Belaish, CEVA
dspdesignline.com (September 03, 2008)
Memory related guidelines
Alignment considerations
Architectures may allow or disallow unaligned memory access. While no special guidelines are required when unaligned memory access is allowed, if disallowed, the programmer must be careful. Ignoring alignment considerations causes severe performance issues and even malfunctions. To avoid malfunctions, all memory accesses need to be executed with the proper alignment. To improve performance, the compiler needs to be aware of the alignment of pointers and arrays in the program. Optimizing compilers normally track pointer arithmetic to identify alignment at each stage of the code in order to apply SIMD (Single Instruction Multiple Data) memory accesses and maintain correctness. In some cases the compiler can tell that a pointer alignment allows memory access optimization (for example, when a pointer to a 16-bit variable is aligned to 32 bits) and then SIMD memory operations are emitted. In other cases, the pointers are not aligned. Then the only option is to make them aligned by copying them to aligned buffers or by using the linker.
In most cases, the compiler simply cannot tell the alignment. It therefore assumes the worst case scenario and avoids memory access optimization as a consequence. To overcome this lack of information, advanced compilers offer a user interface for specifying the alignment of a given pointer. The compiler then uses this information when considering memory access optimization for the pointer. For loops with excessive memory accesses (such as copy loops), this feature allows two and even four times acceleration.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Architecture Oriented C Optimizations
- A Multi-Objective Optimization Model for Energy and Performance Aware Synthesis of NoC Architecture
- Architecture-oriented C optimization, part 1: DSP features
- Effective Optimization of Power Management Architectures through Four standard "Interfaces for the Distribution of Power"
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS