Architecture-oriented C optimization, part 1: DSP features
Here's how C optimizations can take advantage of zero overhead loop mechanisms, hardware saturation, modulo registers, and more.
By Mr. Eran Belaish, CEVA
dspdesignline.com (August 27, 2008)
By Mr. Eran Belaish, CEVA
dspdesignline.com (August 27, 2008)
Know your hardware! That's what it's all about. Using programming guidelines derived from the processor's architecture can dramatically improve performance of C applications. In some cases, it can even make the difference between having the application implemented in C and having it implemented in assembly. Well written C code and an advanced compiler that utilizes various architectural features often reach performance results similar to those of hand written assembly code. A quick survey of assembly coding drawbacks should make it fairly clear why real-time programmers need architecture oriented programming guidelines in their toolkit.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Architecture Oriented C Optimizations
- A Multi-Objective Optimization Model for Energy and Performance Aware Synthesis of NoC Architecture
- Architecture-oriented C optimization, part 2: Memory and more
- Effective Optimization of Power Management Architectures through Four standard "Interfaces for the Distribution of Power"
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS