Architecture-oriented C optimization, part 1: DSP features
Here's how C optimizations can take advantage of zero overhead loop mechanisms, hardware saturation, modulo registers, and more.
By Mr. Eran Belaish, CEVA
dspdesignline.com (August 27, 2008)
By Mr. Eran Belaish, CEVA
dspdesignline.com (August 27, 2008)
Know your hardware! That's what it's all about. Using programming guidelines derived from the processor's architecture can dramatically improve performance of C applications. In some cases, it can even make the difference between having the application implemented in C and having it implemented in assembly. Well written C code and an advanced compiler that utilizes various architectural features often reach performance results similar to those of hand written assembly code. A quick survey of assembly coding drawbacks should make it fairly clear why real-time programmers need architecture oriented programming guidelines in their toolkit.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Architecture Oriented C Optimizations
- A Multi-Objective Optimization Model for Energy and Performance Aware Synthesis of NoC Architecture
- Architecture-oriented C optimization, part 2: Memory and more
- Understanding the reuse of a DSP architecture for different designs (Ceva)
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models