Reclaiming lost yield through methodical power integrity optimization
Christian Petersen, Teklatech A/S
EETimes (4/1/2013 10:32 AM EDT)
As designs are moving to 28nm and beyond, designers fully experience the effects of the much higher power density and diminishing effectiveness of decoupling capacitances at these geometries: failures due to dynamic power noise integrity issues is a significant contributor to yield loss in many designs. Synchronous switching and increasing di/dt at advanced process nodes (Figure 1) makes it increasingly challenging for designers to deal with on-chip dynamic voltage drop (DVD) and high frequency electromagnetic interference (EMI). And neither is to be taken lightly; studies have shown DVD fluctuations introduce sizable gate delays causing timing-related yield loss, and EMI from digital switching similarly cause mixed-signal yield loss due to compromised noise integrity.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Making ESL power optimization a reality
- Leakage power optimization for 28nm and beyond
- Optimizing embedded software for power efficiency: Part 4 - Peripheral and algorithmic optimization
- Effective Optimization of Power Management Architectures through Four standard "Interfaces for the Distribution of Power"
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core