How to simplify power design development and evaluation for FPGA-based systems
pldesignline.com (July 09, 2008)
Power consumption in electronic devices and the design of power systems is an increasingly complex task. Static current levels coupled with increased dynamic current demands imply greater IR drops in power distribution systems. Operating temperature requirements require sophisticated heat sink and airflow measurements. The Virtex-5 FPGA System Monitor features on-die temperature and voltage measurement capabilities that provide valuable information for the development, evaluation, debugging, optimization, and qualification of PCB power designs. This article explains how to configure System Monitor's external channels for power monitoring and provides PCB implementation recommendations/guidelines.
System Monitor Overview
The Virtex-5 FPGA System Monitor has, as its core, a 200 kilo-Samples-Per-Second (kSPS) Analog-to-Digital Converter (ADC). Fig 1 shows a block diagram of the System Monitor.
1. The System Monitor Block.
(Click this image to view a larger, more detailed version)
The System Monitor allows unprecedented and convenient access to vital on-chip analog FPGA information. The inputs to the ADC are on-die temperature and voltage sensors. Using its 17 available external channels, the System Monitor provides for the measurement of the physical environment of the PCB or enclosure. The control logic implements common monitoring features, including automatic channel sequencing, filtering, and alarms. All of these features are user programmable and can be customized at run time through the register file interface accessible in the FPGA logic through the Dynamic Reconfiguration Port (DRP). The DRP is a standard bus interface available in many Xilinx FPGA blocks. This port enables updating the configuration of a particular block in a dynamic manner. Alternatively, the register file interface is accessed externally through the JTAG Test Access Port (TAP). Indeed, access to the System Monitor feature is available even before the device is configured using the JTAG TAP.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- Is FPGA power design ready for concurrent engineering?
- Neural Networks and the Rings of Power
- 10 FPGA Design Techniques You Should Know
- Power and Complexity: Welcome to AMP
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference