Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
By Zexin Fu 1, Riccardo Tedeschi 2, Gianmarco Ottavi 2, Nils Wistoff 1, César Fuguet 3, Davide Rossi 2, Luca Benini 1,2
1 ETH Zürich, Switzerland
2 Università di Bologna, Italy
3 Univ. Grenoble Alpes, Inria, France
Abstract
Open-source RISC-V cores are increasingly demanded in domains like automotive and space, where achieving high instructions per cycle (IPC) through superscalar and out-of-order (OoO) execution is crucial. However, high-performance open-source RISC-V cores face adoption challenges: some (e.g. BOOM, Xiangshan) are developed in Chisel with limited support from industrial electronic design automation (EDA) tools. Others, like the XuanTie C910 core, use proprietary interfaces and protocols, including non-standard AXI protocol extensions, interrupts, and debug support.
In this work, we present a modified version of the OoO C910 core to achieve full RISC-V standard compliance in its debug, interrupt, and memory interfaces. We also introduce CVA6S+, an enhanced version of the dual-issue, industry-supported open-source CVA6 core. CVA6S+ achieves 34.4% performance improvement over CVA6 core.
We conduct a detailed performance, area, power, and energy analysis on the superscalar out-of-order C910, superscalar in-order CVA6S+ and vanilla, single-issue in-order CVA6, all implemented in a 22nm technology and integrated into Cheshire, an open-source modular SoC. We examine the performance and efficiency of different microarchitectures using the same ISA, SoC, and implementation with identical technology, tools, and methodologies. The area and performance rankings of CVA6, CVA6S+, and C910 follow expected trends: compared to the scalar CVA6, CVA6S+ shows an area increase of 6% and an IPC improvement of 34.4%, while C910 exhibits a 75% increase in area and a 119.5% improvement in IPC. However, efficiency analysis reveals that CVA6S+ leads in area efficiency (GOPS/mm2), while the C910 is highly competitive in energy efficiency (GOPS/W). This challenges the common belief that high performance in superscalar and out-of-order cores inherently comes at a significant cost in area and energy efficiency.
Keywords: RISC-V, Out-of-Order, Superscalar, Energy Efficiency, Open-source
To read the full article, click here
Related Semiconductor IP
- All-In-One RISC-V NPU
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
- RISC-V CPU IP
- Data Movement Engine - Best in class multi-core high-performance AI-enabled RISC-V Automotive CPU for ADAS, AVs and SDVs
- 32-bit 8-stage superscalar processor that supports RISC-V specification, including GCNP and Linux
Related White Papers
- Optimizing Energy Efficiency in Subthreshold RISC-V Cores
- The Rise of RISC-V and ISO 26262 Compliance
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience
- Assessing Design Space for the Device-Circuit Codesign of Nonvolatile Memory-Based Compute-in-Memory Accelerators
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity