Achieving FPGA Design Performance Quickly
Joe Mallett, Synopsys
EETimes (2/8/2017 11:20 AM EST)
This column highlights the broad steps designers need to complete as they close timing and how tool automation helps to simplify the process.
Today's engineering teams are tasked with delivering FPGA-based products under incredible schedule constraints to market windows. Closing timing constraints is still a challenge for many designers. FPGA design tools are a necessity to help define and apply the correct constraints to a design to quickly close timing and complete the project. This blog highlights the broad steps designers need to complete as they close timing and how tool automation helps to simplify the process.
- Design setup
- Initial timing constraint setup
- Constraints tuning
When starting a new project, designers need to setup the environment and import the IP for the design, which may come from multiple sources. FPGA design tools help automate this process for designers, making it easier and faster while also helping to remove import errors from the process. In addition to the IP import, the tools should automate the constraint import for a given block. These constraints will be shown in the FPGA Design Constraints (FDC) files within the tools, showing the correct syntax for things like clocks, I/O, and clock groups.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Achieving FPGA Design Performance Quickly
- How to get more performance in 65 nm FPGA designs
- Achieving multicore performance in a single core SoC design using a multi-threaded virtual multiprocessor: Part 2
- How to maximize FPGA performance
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity