Improving analog design verification using UVM
Mike Bartley, Test and Verification Solutions
EDN (March 23, 2015)
As technology becomes more integrated into our everyday life, our chips need to better communicate with the analog world. Most modern system on chip (SoC) designs therefore contain analog and mixed-signal (AMS) elements integrated with digital components. According to Sandip Ray of Intel, AMS elements currently consume about 40% of the design effort, and an estimated 50% of errors in recent chips that require a redesign are due to bugs in the AMS portion of the design [1].
This increase in AMS content in silicon creates several verification challenges: how do we verify the analog design itself, its integration with the digital, and whether the combination achieves the intended overall function? However, there is no standard or even widely adopted approach to this despite the continuous increase in analog content. One potential route is via an efficient, reusable AMS verification approach using the Universal Verification Methodology (UVM) outlined below:
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- Metric Driven Verification of Reconfigurable Memory Controller IPs Using UVM Methodology for Improved Verification Effectiveness and Reusability
- Design patterns in SystemVerilog OOP for UVM verification
- Improving Verification Efficiency Using Application Specific Instruction Processors
- Improving SystemVerilog UVM Transaction Recording and Modeling
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference