Hardware/software design requirements analysis: Part 1 - Laying the ground work
Jeffrey O. Grady, President, JOG Systems Engineering, Inc.
EETimes (11/6/2011 8:49 PM EST)
This series of articles is about the process of developing good specifications for any hardware or software development project. In the English-speaking world, requirements are phrased in English sentences that cannot be distinguished structurally from English sentences constructed for any other purpose.
Yes, specifications are full of sentences. It is relatively easy to write sentences once you know what to write them about. A requirement is simply a statement in the chosen language that clearly defines an expectation placed on the design process prior to implementing the creative design process.
Requirements are intended to constrain the solution space to solutions that will encourage small-problem solutions that synergistically work together to satisfy the large-problem (system) solution.
Requirements are formed from the words and symbols of the chosen language. They include all of the standard language components arranged in the way that a good course in that language, commonly studied in the lower grades in school, specifies.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Hardware/software design requirements planning - Part 2: Decomposition using structured analysis
- Hardware/software design requirements planning: Part 3 - Performance requirements analysis
- Consumer IC Advances -> Meeting MPEG-4 advanced audio coding requirements
- SoC Test and Verification -> Coverage analysis essential in ATE
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension