Don't over-constrain in formal property verification (FPV) flows
Anders Nordstrom, Synopsys
EDN (February 04, 2016)
Formal property verification (FPV) is increasingly being used to complement simulation for system-on-chip (SoC) verification. Adding FPV to your verification flow can greatly accelerate verification closure and find tough corner-case bugs, but it is important to understand the differences between the technologies. The main difference is that FPV uses properties, i.e., assertions and constraints, instead of a testbench. Assertions are used in simulation as well, but the role of constraints is different. An understanding of constraints is necessary for successful use of FPV.
Constraints
Constraints play a central role in FPV. They define what is legal stimulus to the design under test, i.e., what state space can be reached. Assertions define the desired behavior of the DUT for the legal stimulus.
Constraints describe how inputs to the DUT are allowed to behave, what values should be taken, and temporal relationships between inputs. Constraints can be thought of as the stimulus in simulation. In constrained random simulation, the constraint solver generates an input vector for the next cycle that satisfies all constraints. It will continue to generate cycle after cycle of stimulus until the end of simulation, or until it reaches a situation where no legal stimulus can be generated.
In contrast, constraints for formal verification can describe, for example, how to legally communicate within a given protocol.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- Formal property verification: A tale of two methods
- Formal, simulation, and AMBA verification IP combine to verify configurable powerline networking SoC
- How formal verification saves time in digital IP design
- Formal Verification Has It Covered!
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference