How formal verification saves time in digital IP design
David Vincenzoni
EDN (November 10, 2015)
It is well known that the task of verification looms large in the design of digital IP, as well as the design of SoCs. The target is to reach 100% for both RTL code and functional coverage, minimizing the time spent obtaining it. The most widely used methodology is based on Universal Verification Methodology (UVM) random constrained tests (either System Verilog or e language) that permit the construction of complex tests in a relatively short time while stressing the RTL code and keeping track of functional coverage. Some verification engineers also use formal methodology for verifying a dedicated part of the block such as standard interfaces, which completes the verification of the IP.
This article will describe a different approach for digital IP verification based on formal methodology, exhaustively verifying the functionalities through the definition of properties. The formal approach has the advantage of avoiding development of test benches. This new flow has been used during the design of a digital IP and has proven to significantly shrink verification time.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related White Papers
- Formal-based methodology cuts digital design IP verification time
- Design patterns in SystemVerilog OOP for UVM verification
- How to manage changing IP in an evolving SoC design
- Time Interleaving of Analog to Digital Converters: Calibration Techniques, Limitations & what to look in Time Interleaved ADC IP prior to licensing
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core