Scaling Performance In AI Systems
Improving performance in AI designs involves the usual tradeoffs in power and performance, but achieving a good balance is becoming much more challenging. There is more data to process, new heterogeneous architectures to contend with, and much higher utilization rates. Andy Nightingale, vice president of product management and marketing at Arteris, talks with Semiconductor Engineering about where the bottlenecks are, how to minimize them in data-intensive workloads across a variety of vertical markets, and why networks on chip are essential to moving and managing this data and getting chips to market on time.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related Videos
- Arm: Scaling AI Compute from Edge to Cloud
- Hardware Innovation in the World's First RISC-V 50 TOPS AI Compute for Mass Production Development
- Baya Systems: CEO Sailesh Kumar on Scaling Up
- Ask the Experts: AI at the Edge