IBM Demos III-V FinFETs on Silicon
CMOS Compatible Process for Advanced Nodes
R. Colin Johnson, EETimes
6/18/2015 10:20 PM EDT
PORTLAND, Ore.--The entire semiconductor industry is trying to find a way to exploit the higher electron mobility of indium, gallium and arsenide (InGaAs) without switching from silicon substrates, including the leaders at Intel and Samsung. IBM has demonstrated how to achieve this with standard CMOS processing.
Last month IBM showed a technique of putting III-V compounds of InGaAs onto silicon-on-oxide (SOI) wafers, but now a different research group claims to have found an even better way that uses regular bulk-silicon wafers and have fabricated the InGaAs-on-silicon FinFETs to prove it.
"Starting from a bulk silicon wafer, instead of SOI, we first put down an oxide layer and make a trench through to the silicon below, then grow the indium gallium arsenide from that seed--its a very manufacturable process," Jean Fompeyrine, manager of advanced functional materials told EE Times. Fompeyrine performed the work with Lukas Czornomaz, an advanced CMOS scientist with IBM Research.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related News
- Intel, IBM Dueling 14nm FinFETS
- HCLTech and Arm collaborate on custom silicon chips optimized for AI workloads
- HCLTech and Arm Collaborate on Custom Silicon Chips Optimized for AI Workloads
- Silicon Creations Expands Clocking IP Portfolio on TSMC N2P Technology including Novel Temperature Sensor Design
Latest News
- CAST Releases First Dual LZ4 and Snappy Lossless Data Compression IP Core
- Arteris Wins “AI Engineering Innovation Award” at the 2025 AI Breakthrough Awards
- SEMI Forecasts 69% Growth in Advanced Chipmaking Capacity Through 2028 Due to AI
- eMemory’s NeoFuse OTP Qualifies on TSMC’s N3P Process, Enabling Secure Memory for Advanced AI and HPC Chips
- AIREV and Tenstorrent Unite to Launch Advanced Agentic AI Stack