IBM Demos III-V FinFETs on Silicon
CMOS Compatible Process for Advanced Nodes
R. Colin Johnson, EETimes
6/18/2015 10:20 PM EDT
PORTLAND, Ore.--The entire semiconductor industry is trying to find a way to exploit the higher electron mobility of indium, gallium and arsenide (InGaAs) without switching from silicon substrates, including the leaders at Intel and Samsung. IBM has demonstrated how to achieve this with standard CMOS processing.
Last month IBM showed a technique of putting III-V compounds of InGaAs onto silicon-on-oxide (SOI) wafers, but now a different research group claims to have found an even better way that uses regular bulk-silicon wafers and have fabricated the InGaAs-on-silicon FinFETs to prove it.
"Starting from a bulk silicon wafer, instead of SOI, we first put down an oxide layer and make a trench through to the silicon below, then grow the indium gallium arsenide from that seed--its a very manufacturable process," Jean Fompeyrine, manager of advanced functional materials told EE Times. Fompeyrine performed the work with Lukas Czornomaz, an advanced CMOS scientist with IBM Research.
To read the full article, click here
Related Semiconductor IP
- Xtal Oscillator on TSMC CLN7FF
- Wide Range Programmable Integer PLL on UMC L65LL
- Wide Range Programmable Integer PLL on UMC L130EHS
- Wide Range Programmable Integer PLL on TSMC CLN90G-GT-LP
- Wide Range Programmable Integer PLL on TSMC CLN80GC
Related News
- Intel, IBM Dueling 14nm FinFETS
- Arm Collaborates with Microsoft on Custom Silicon to Unlock Sustainable, AI-Driven Infrastructure
- Omni Design Technologies Announces Expanded Silicon IP Solutions on Multiple TSMC Processes
- zeroRISC, Nuvoton and Winbond Join Forces to Deliver the First Commercial Product Based on the OpenTitan® Open-Source Secure Silicon Platform
Latest News
- RaiderChip NPU for LLM at the Edge supports DeepSeek-R1 reasoning models
- The world’s first open source security chip hits production with Google
- ZeroPoint Technologies Unveils Groundbreaking Compression Solution to Increase Foundational Model Addressable Memory by 50%
- Breker RISC-V SystemVIP Deployed across 15 Commercial RISC-V Projects for Advanced Core and SoC Verification
- AheadComputing Raises $21.5M Seed Round and Introduces Breakthrough Microprocessor Architecture Designed for Next Era of General-Purpose Computing