FeFET to Extend Moore's Law
R. Colin Johnson, EETimes
1/15/2015 11:00 AM EST
PORTLAND, Ore. -- Universal memory replacing DRAM, SRAM, flash and nearly every transistor in a computer may result from their successful fabrication of a ferroelectric gate over germanium channel material, according to researchers at the University of Texas (Austin). Their successful ferroelectric gate stack holds the hope of extending Moore's Law beyond the end of the International Technology Roadmap for Semiconductors (ITRS) circa 2028.
"We have not yet built a complete ferroelectric field-effect transistor -- or FeFET -- but we have proven that our detailed simulations on the supercomputer at the Texas Advanced Computing Center can be realized in the lab," professor Alexander Demkov told EE Times. "What we have done is build the complete gate stack and gotten the material and fabrication techniques right -- our next step will be to fabricate the germanium channel to complete the FeFET."
To read the full article, click here
Related Semiconductor IP
- Multi-channel Ultra Ethernet TSS Transform Engine
- Configurable CPU tailored precisely to your needs
- Ultra high-performance low-power ADC
- HiFi iQ DSP
- CXL 4 Verification IP
Related News
- Moore Microprocessor Portfolio (MMP) Inventor Files Lawsuit against TPL Group
- Moore's Law could enter the fourth dimension--via the third
- Moore's Law threatened by lithography woes
- Broadcom: Time to prepare for the end of Moore's Law
Latest News
- ASICLAND Partners with Daegu Metropolitan City to Advance Demonstration and Commercialization of Korean AI Semiconductors
- SEALSQ and Lattice Collaborate to Deliver Unified TPM-FPGA Architecture for Post-Quantum Security
- SEMIFIVE Partners with Niobium to Develop FHE Accelerator, Driving U.S. Market Expansion
- TASKING Delivers Advanced Worst-Case Timing Coupling Analysis and Mitigation for Multicore Designs
- Efficient Computer Raises $60 Million to Advance Energy-Efficient General-Purpose Processors for AI