Unsafe memory access is ruinous
Most organizations are aware of cybercrime attempts such as phishing, installing malware from dodgy websites or ransomware attacks and undertake countermeasures. However, relatively little attention has been given to memory safety vulnerabilities such as buffer overflows or over-reads. For decades industry has created billions of lines of C & C++ code but addressing the resulting memory safety risks has been a tough challenge. This blog series will explore memory vulnerabilities, the causes of memory unsafety and potential preventative measures.
To read the full article, click here
Related Semiconductor IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- Compact Embedded RISC-V Processor
- Multi-core capable 64-bit RISC-V CPU with vector extensions
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
Related Blogs
- Cadence ONFI 4.0 Flash Memory IP Increases Data Access to 800Mtps and Reduces Power Up to 50%
- High-Bandwidth Accelerator Access to Memory: Enabling Optimized Data Transfers with RISC-V
- Part 3: High-Bandwidth Accelerator Access to Memory: Enabling Optimized Data Transfers with RISC-V
- Accessing Memory Mapped Registers in CXL 2.0 Devices
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production