Microprocessor Report publishes extremely interesting comparison of STMicroelectronics SPEAr-1300 and Xilinx Zynq ARM-based, dual core application processors
Last month, STMicroelectronics introduced the latest in its line of SPEAr (Structured Processor Enhanced Architecture) application processors and Microprocessor Report has just published a very interesting article about the new products (paid subscription required). The SPEAr-1300 series is based on two 600MHz ARM Cortex-A9 microprocessor cores (upgraded from the 333MHz ARM9 cores used in the earlier SPEAr parts). Each ARM processor core in the SPEAr-1300 embedded application processor has two 32-kbyte L1 caches and the two processor cores share a 512-kbyte L2 cache. The SPEAr-1300 application processor also includes a number of hard-core IP peripherals including a Gigabit Ethernet port, a PCIe/SATA port, and two USB 2.0 ports. In addition, there are 1.3 million uncommitted ASIC gates that can be configured for specific applications and, in a throwback to the disco days of the 1980s, these ASIC gates are configured as a metal-defined gate array so the wafers can be stockpiled awaiting final metal designs.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Xilinx Zynq EPPs: Leibson's Law in action?
- Exploring the Xilinx Zynq: software platform, or complex FPGA?
- Xilinx Zynq UltraScale MPSoC
- Using Physical USB Devices with the Xilinx Zynq-7000 Virtual Platform
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?