Reviewing different Neural Network Models for Multi-Agent games on Arm using Unity
During the Game Developer Conference (GDC) in March 2023, we showcased our multi-agent demo called Candy Clash, a mobile game containing 100 intelligent agents. In the demo, the agents are developed using Unity’s ML-Agents Toolkit which allows us to train them using reinforcement learning (RL). To find out more about the demo and its development, see our previous blog series. Previously, the agents had a simple Multi-Layer Perceptron (MLP) Neural Network (NN) model. This blog explores the impact of using other types of neural networks models on the gaming experience and performance.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
Related Blogs
- Benefit of pruning and clustering a neural network for before deploying on Arm Ethos-U NPU
- Neural Network Model quantization on mobile
- New Armv9 CPUs for Accelerating AI on Mobile and Beyond
- Easing software development for high-performance zonal controller based on Arm Cortex-R82AE
Latest Blogs
- Cadence Powers AI Infra Summit '25: Memory, Interconnect, and Interface Focus
- Integrating TDD Into the Product Development Lifecycle
- The Hidden Threat in Analog IC Migration: Why Electromigration rules can make or break your next tapeout
- MIPI CCI over I3C: Faster Camera Control for SoC Architects
- aTENNuate: Real-Time Audio Denoising