Benefit of pruning and clustering a neural network for before deploying on Arm Ethos-U NPU
Pruning and clustering are optimization techniques:
- Pruning: setting weights to zero
- Clustering: grouping weights together into clusters
These techniques modify the weights of a Machine Learning model. In some cases, they enable:
- Significant speed-up of the inference execution
- Reduction of the memory footprint
- Reduction in the overall power consumption of the system
We assume that you can optimize your workload without loss in accuracy and that you target an Arm® Ethos NPU. You can therefore prune and cluster your neural network before using the Vela compiler and deploying it on the Ethos-U hardware. See below for more information on optimizing your workload.
To read the full article, click here
Related Semiconductor IP
- SoC Security Platform / Hardware Root of Trust
- SPI to AHB-Lite Bridge
- Octal SPI Master/Slave Controller
- I2C and SPI Master/Slave Controller
- AHB/AXI4-Lite to AXI4-Stream Bridge
Related Blogs
- Reviewing different Neural Network Models for Multi-Agent games on Arm using Unity
- How Google and Arm Collaborate on the Next Wave of Cloud Infrastructure
- Neural Network Model quantization on mobile
- Pace of Innovation for Custom Silicon on Arm Continues with AWS Graviton4