Benefit of pruning and clustering a neural network for before deploying on Arm Ethos-U NPU
Pruning and clustering are optimization techniques:
- Pruning: setting weights to zero
- Clustering: grouping weights together into clusters
These techniques modify the weights of a Machine Learning model. In some cases, they enable:
- Significant speed-up of the inference execution
- Reduction of the memory footprint
- Reduction in the overall power consumption of the system
We assume that you can optimize your workload without loss in accuracy and that you target an Arm® Ethos NPU. You can therefore prune and cluster your neural network before using the Vela compiler and deploying it on the Ethos-U hardware. See below for more information on optimizing your workload.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
Related Blogs
- Reviewing different Neural Network Models for Multi-Agent games on Arm using Unity
- Neural Network Model quantization on mobile
- New Armv9 CPUs for Accelerating AI on Mobile and Beyond
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring
Latest Blogs
- Cadence Powers AI Infra Summit '25: Memory, Interconnect, and Interface Focus
- Integrating TDD Into the Product Development Lifecycle
- The Hidden Threat in Analog IC Migration: Why Electromigration rules can make or break your next tapeout
- MIPI CCI over I3C: Faster Camera Control for SoC Architects
- aTENNuate: Real-Time Audio Denoising