Benefit of pruning and clustering a neural network for before deploying on Arm Ethos-U NPU
Pruning and clustering are optimization techniques:
- Pruning: setting weights to zero
- Clustering: grouping weights together into clusters
These techniques modify the weights of a Machine Learning model. In some cases, they enable:
- Significant speed-up of the inference execution
- Reduction of the memory footprint
- Reduction in the overall power consumption of the system
We assume that you can optimize your workload without loss in accuracy and that you target an Arm® Ethos NPU. You can therefore prune and cluster your neural network before using the Vela compiler and deploying it on the Ethos-U hardware. See below for more information on optimizing your workload.
To read the full article, click here
Related Semiconductor IP
- xSPI Multiple Bus Memory Controller
- MIPI CSI-2 IP
- PCIe Gen 7 Verification IP
- WIFI 2.4G/5G Low Power Wakeup Radio IP
- Radar IP
Related Blogs
- Reviewing different Neural Network Models for Multi-Agent games on Arm using Unity
- Neural Network Model quantization on mobile
- Pace of Innovation for Custom Silicon on Arm Continues with AWS Graviton4
- Windows on Arm is Ready for Prime Time: Native Chrome Caps Momentum for the Future of Laptop Computing
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA