Moore's on at 28nm
Scaling will keep on using 28/22 nm
Moore's Law is not ending soon, yet it is not going to be the simple brute-force x0.7 dimensional scaling that dominated the industry for the last 5 decades.
In his famous 1965 paper Cramming more components onto integrated circuits, Moore wrote: “The complexity for minimum component costs has increased at a rate of roughly a factor of two per year”. Dimensional scaling below 28nm will only increase the ‘component cost’ as described in 28nm – The Last Node of Moore's Law. While there is still a strong effort behind dimensional scaling to 14, 10 and 7nm – and possibly even beyond, a new scaling effort is emerging attempting to reduce the ‘component costs’ and increase integration by the other factors presented by Moore in his 1975 famous IEDM paper “Progress in digital integrated electronics." In the 1975 paper Moore updated the time scaling rate to every two years and suggested the following factors–see the following figure taken from his paper—helping to drive scaling forward:
- “Die size”—“larger chip area”
- “Dimension”—“higher density” and “finer geometries”
- “Device and circuit cleverness”
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related Blogs
- Moore's Law did indeed stop at 28nm
- Moore's Law and 28nm Yield
- Moore's Law Has Stopped at 28nm!
- Four questions about Moore's Law, 28nm and the future of IP design
Latest Blogs
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security