Moore's Law Has Stopped at 28nm!
While many have recently predicted the imminent demise of Moore’s Law, we need to recognize that this actually has happened at 28nm. From this point on we will still be able to double the amount of transistors in a single device but not at lower cost. And, for most applications, the cost will actually go up.
Let’s go back to 1965 and Moore’s paper in "Electronics, Volume 38, Number 8, April 19, 1965 The future of integrated electronics". The following figure represented Dr. Moore’s observation with regard to three consecutive technology nodes. Quoting: ..."the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate. For simple circuits, the cost per component is nearly inversely proportional to the number of components, the result of the equivalent piece of semiconductor in the equivalent package containing more components. But as components are added, decreased yields more than compensate for the increased complexity, tending to raise the cost per component. Thus there is a minimum cost at any given time in the evolution of the technology"
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related Blogs
- Moore's Law did indeed stop at 28nm
- Moore's Law and 28nm Yield
- Four questions about Moore's Law, 28nm and the future of IP design
- Moore's on at 28nm
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?