Is RISC-V the Future?
Is RISC-V the future? This is a question that we often get asked, and let’s assume that we mean ‘is the RISC-V going to be the dominant ISA in the processor market?’. This is certainly an unfolding situation and has changed significantly in the last five years.
RISC-V originated at the University of California, Berkeley, in 2010 and took a number of years to get traction with industry. A big step forward was the formation of the RISC-V Foundation in 2015 as a non-profit organisation to drive the adoption of RISC-V. In early 2020, the RISC-V Foundation activity was re-branded and re-incorporated as the Swiss-based RISC-V International .
I remember exhibiting at Embedded World in 2017 and the Codasip stand had the RISC-V logo prominently displayed. Many visitors asked, “what is RISC-V?”, showing that awareness in Europe was low. Since then, the situation has changed dramatically with a high level of interest in all geographies.
For many years, we have tended to classify processors into silos such as MPU, MCU, GPU, APU, DSP, etc. Some devices, such as mobile phones, would combine multiple types of processor cores in their designs. If we think back to, say, 2016, the MPU world was dominated by the X86 architecture while Arm dominated both APUs (application processors and the mobile phone ecosystem generally) and MCUs.
Today there are a few new trends that we can identify in the market.
To read the full article, click here
Related Semiconductor IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- Compact Embedded RISC-V Processor
- Multi-core capable 64-bit RISC-V CPU with vector extensions
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
Related Blogs
- Exploring the Ongoing Debate: Is RISC-V Rigid or Flexible?
- The Heart of RISC-V Development is Unmatched
- How Imagination is steering the automotive industry to a safer future
- RISC-V is Inevitable
Latest Blogs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
