How to Secure IoT Edge Device from Multiple Attacks?
In the 1990’s, designing for performance was the main challenge and the marketing message for Intel processors was limited to the core frequency. Then designers had to optimize power consumption to target mobile phones/smartphone and build power efficient SoC, low power but high performance devices. Now in 2015 the semi industry realizes that security is becoming a very strong requirement almost mandatory to support emerging systems expected to equip every house, car, factory or body. If you think that security is optional, just remember that tomorrow’ electronic systems will have to be built to support a changing world, just take Paris attacks as an example of today’ reality …
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- How Secure DDR Interfaces Protect DRAM from Memory Attacks
- NXP Introduces Tensilica HiFi 4 DSP-based Platforms to Secure IoT Edge Devices
- How to Secure Your Computing System's Power-Up Process with Secure Boot?
- From All-in-One IP to Cervell™: How Semidynamics Reimagined AI Compute with RISC-V
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power