How to Secure IoT Edge Device from Multiple Attacks?
In the 1990’s, designing for performance was the main challenge and the marketing message for Intel processors was limited to the core frequency. Then designers had to optimize power consumption to target mobile phones/smartphone and build power efficient SoC, low power but high performance devices. Now in 2015 the semi industry realizes that security is becoming a very strong requirement almost mandatory to support emerging systems expected to equip every house, car, factory or body. If you think that security is optional, just remember that tomorrow’ electronic systems will have to be built to support a changing world, just take Paris attacks as an example of today’ reality …
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- How Secure DDR Interfaces Protect DRAM from Memory Attacks
- NXP Introduces Tensilica HiFi 4 DSP-based Platforms to Secure IoT Edge Devices
- How to Secure Your Computing System's Power-Up Process with Secure Boot?
- From All-in-One IP to Cervell™: How Semidynamics Reimagined AI Compute with RISC-V
Latest Blogs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
