How to Secure Your Computing System's Power-Up Process with Secure Boot?
A hardware-based secure boot can strengthen the integrity of a computing system during its power-up. How can we implement a secure boot in our devices, and what prerequisites are required?
Quite often, when one thinks about security and cryptography in particular, the focus is on confidentiality: How do I keep my messages secret? How do I keep my computing device secure so that attackers cannot access my valuable data?
However, integrity is quite often even a prerequisite for confidentiality in a computer system. Therefore, one should also ask:
How do I know that the messages I send are received unmodified?
How do I know that my computing device behaves as intended and is not running some malicious piece of software that leaks all my secrets to an attacker?
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Why Secure Boot is Your Network’s Best Friend (And What BlackTech Taught Us)
- When countries rush to secure the first 450mm fab
- ICCAD Keynote: Design of Secure Systems - Where are the EDA Tools?
- EDA in the Cloud: OneSpin says your design is secure
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power