Minimize Design Risk and Achieve First-Pass Silicon Success on TSMC's N3E Process
Although the path from chip design to tape-out was never an easy one to navigate, this journey has become ever more challenging due to a growing demand for lower-power, higher-bandwidth applications. Indeed, chip architectures continue to increase in complexity on the most advanced FinFET nodes as billions of transistors are packed into smaller, denser silicon packages to meet new power, performance, and area (PPA) requirements. That’s why Synopsys and TSMC continuously collaborate to deliver the chip design industry’s broadest silicon-proven IP portfolio on the latest process technologies.
Synopsys’ IP silicon success for the TSMC N3E node—which provides a fast path to TSMC N3P, N3AE, and beyond—minimizes integration risks and accelerates time to market. Read on to learn how Synopsys IP enables semiconductor companies to develop advanced SoCs and multi-die systems for a wide range applications and technologies including artificial intelligence (AI) and machine learning (ML), high-performance computing (HPC), and mobile.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Synopsys Accelerates Multi-Die System Designs With Successful UCIe PHY IP Tape-Out on TSMC N3E Process
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Synopsys Tapes Out SLM PVT Monitor IP on TSMC N5 and N3E Processes
- TSMC Technology Symposium: Process Status
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power