Enabling the Global 800G Ecosystem with 112G Ethernet PHY IP
Hyperscale data centers are rapidly evolving to accommodate a wide range of high-bandwidth, low-latency applications, from artificial intelligence (AI) and high-performance computing (HPC) to telecommunications and streaming 4K video. These applications are enabled by a new generation of multi-die systems, AI accelerators, and machine learning (ML) training sets that require ever-higher transfer speeds. To meet this demand, Ethernet has scaled from 51Tb/s to 100Tb/s, while switch transfer rates have increased from 51Tb/s to 100Tb/s.
Higher data transfer rates have prompted hyperscale data centers worldwide to deploy end-to-end networking infrastructure built with interface IP that uses pulse amplitude modulation 4-level (PAM-4) signaling techniques. Compared to non-return-to-zero (NRZ) signaling, PAM-4 enables higher bit rates at half the baud rate. Although PAM-4 signaling increases design complexity with added crosstalk and non-linearity, PAM-4 is now the de-facto signaling modulation for interface IP—including 112G Ethernet PHYs—in hyperscale data centers and the broader HPC system-on-chip (SoC) market.
Read on to learn how to optimize implementation of 112G Ethernet PHY IP for HPC SoCs. Gain insights from companies that are leveraging 112G Ethernet PHY IP to design many different types of high-bandwidth networking devices and infrastructure, including AI accelerators, servers, and network interface cards (NICs), as well as networking and interconnect fabric SoCs, optical modules, storage devices, and retimers.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- The Road to Innovation with Synopsys 224G PHY IP From Silicon to Scale: Synopsys 224G PHY Enables Next Gen Scaling Networks
- Meeting the World's Growing Bandwidth Demands with a Complete 1.6T Ethernet IP Solution
- Guarding against the threat of clock attacks with analog IP
- Analog Bits Steals the Show with Working IP on TSMC 3nm and 2nm and a New Design Strategy
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power