How Does Short-Reach Connectivity Transcend Physical and Power Limits?
Picture this scenario: You’re getting ready to go to work but aren’t sure of how warmly you should dress. Shuffling between outfits, you ask your smart home device, “What’s the weather like today?” Within a fraction of a second, it responds with the current temperature and the weather forecast for the rest of the day.
But what really happens at the backend? Your “command” travels in the form of data packets over the internet and into global fiber networks, covering miles to converge at one of the many data centers to receive, map, and relay the information you need. Now imagine a single country’s population using their smart home devices, streaming Netflix movies, and attending group Zoom meetings at the same time. That is an overwhelming amount of data.
This growth in data traffic has led to a rising demand for faster data network and interface speeds, with the inherent focus being on high reach while maintaining lower latency and power levels than those offered by legacy architectures. Modern data centers rely greatly on interconnects to deliver this connectivity. As the industry moves to higher transmission speeds, think 100 gigabits per second (Gbps) per lane, using long-reach connectivity approaches to communicate is challenging. Consequently, the power and integration issues become bigger bottlenecks.
Thanks to very short-reach (VSR) connectivity, teams can now overcome this pitfall by considering possibilities where short-reach connection links can be used to reach shorter distances, resulting in better power efficiency and management.
Read on to learn more about VSR connectivity, its advantages, trends that are driving this transformation, use cases, and solutions to overcome existing reach limits of copper modules.
Related Semiconductor IP
- JESD204D Transmitter and Receiver IP
- 100G UDP IP Stack
- Frequency Synthesizer
- Temperature Sensor IP
- LVDS Driver/Buffer
Related Blogs
- Ensigma Whisper radio processors take on low power connectivity
- Dynamic Power Estimation Hits Limits of SoC Designs
- Pushing the limits of tomorrow's technology today: Artisan physical IP for 7nm
- How to Achieve High Bandwidth and Low Latency Die-to-Die Connectivity
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?