Automatically generated analog IP: How it works in SoC designs
In complex system-on-chip (SoC) designs with heterogeneous voltage domains, the shift from custom analog IP to automated digital implementation is enabling designers to save several months while they don’t have to worry about schedule slips caused by manual analog customizations.
The manual design process for analog IP—which hasn’t changed much since the inception of ICs during the 1960s—is often a bottleneck in the chip design stage. Any change in the original IP introduces a potential for errors and additional verification work. Moreover, the integration of analog IP onto a chip design is a time-consuming process. Especially, when analog circuits are susceptible to the on-chip surroundings.
That’s why the highly manual analog design process, which typically takes several months, is now giving way to automated generation of code for analog IP blocks. The automatically-generated analog IP saves integration time and effort.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- What's a memory booster, and how does it ease SoC bottlenecks
- Standing the Test of Time: How Advanced Protocol Verification Creates Bulletproof SoC Designs
- Understanding USB IP and Its Role in SOC Integration
- What's it take to design DDR4 into your next SoC? Newly released DFI 3.0 Spec opens the flood gates for DDR4 design
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform