Automatically generated analog IP: How it works in SoC designs
In complex system-on-chip (SoC) designs with heterogeneous voltage domains, the shift from custom analog IP to automated digital implementation is enabling designers to save several months while they don’t have to worry about schedule slips caused by manual analog customizations.
The manual design process for analog IP—which hasn’t changed much since the inception of ICs during the 1960s—is often a bottleneck in the chip design stage. Any change in the original IP introduces a potential for errors and additional verification work. Moreover, the integration of analog IP onto a chip design is a time-consuming process. Especially, when analog circuits are susceptible to the on-chip surroundings.
That’s why the highly manual analog design process, which typically takes several months, is now giving way to automated generation of code for analog IP blocks. The automatically-generated analog IP saves integration time and effort.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Understanding USB IP and Its Role in SOC Integration
- What's a memory booster, and how does it ease SoC bottlenecks
- Standing the Test of Time: How Advanced Protocol Verification Creates Bulletproof SoC Designs
- How to Verify Complex PIPE Interface Based PHY Designs?
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview