FPGA Prototyping of System-on-Chip (SoC) Designs
The need for a complete prototyping platform for any design size at any design stage with enterprise-wide access, anytime, anywhere.
Today's off-the-shelf FPGA prototyping systems have established their value in every stage of the system-on-chip (SoC) design flow. Moving beyond traditional applications such as in-circuit testing and early software development, this technology has expanded to encompass functional design and verification .
FPGA-based prototypes work with electronic system level (ESL) design environments to refine, validate, and implement the chip's architecture, and with simulation tools to achieve an order of magnitude (or more) increase in verification speed.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- ARM's Cortex-M3 in new designs, robots, analog, FPGA & new cores
- Do we need a new FPGA structure for prototyping?
- Virtual Platforms plus FPGA Prototyping, the Perfect Mix
- TPACK's role in Altera designs
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?